If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15a^2+6a+9=0
a = -15; b = 6; c = +9;
Δ = b2-4ac
Δ = 62-4·(-15)·9
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-24}{2*-15}=\frac{-30}{-30} =1 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+24}{2*-15}=\frac{18}{-30} =-3/5 $
| 4x+6(5-x)=-5(2x- | | -7+x=2x-1 | | -3(5z+4)=-30 | | 8m-89=-1 | | x+2x+2=x+4+12 | | 3(x+2)^2+6=153 | | 2+40x=2+100x | | 3875r+67=7 | | 4x+100=2x+40 | | 46-1÷8x=18x+5 | | 6j-4=4K | | 17=36-y | | 5.5x+0.71=-1.49 | | 5k+34=-10 | | 6-2(3x-2))=-20 | | 0=x^2-6x+1 | | 5.5x+0.71=1.49 | | -5+6(1-7a)=26 | | -84=4.2j | | n+6/5=199/45 | | 2/3h+1/4h=22 | | m2=64=0 | | 2k+4(3k-1)=3(k-2) | | 4m^2100=0 | | |6x+4|=8x+10 | | 30=6+3(s-9) | | 17-133(3x-1)=2 | | 36=17-y | | 9n+4n-7n=20 | | -10-3w-9=9+4w | | (8x+12)=4 | | (1)/(2)r+6=3-2r |